Regularized Policy Gradients: Direct Variance Reduction in Policy Gradient Estimation

نویسندگان

  • Tingting Zhao
  • Gang Niu
  • Ning Xie
  • Jucheng Yang
  • Masashi Sugiyama
چکیده

Policy gradient algorithms are widely used in reinforcement learning problems with continuous action spaces, which update the policy parameters along the steepest direction of the expected return. However, large variance of policy gradient estimation often causes instability of policy update. In this paper, we propose to suppress the variance of gradient estimation by directly employing the variance of policy gradients as a regularizer. Through experiments, we demonstrate that the proposed variance-regularization technique combined with parameter-based exploration and baseline subtraction provides more reliable policy updates than non-regularized counterparts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Variance Reduction for Policy Gradient Estimation

Recent advances in policy gradient methods and deep learning have demonstrated their applicability for complex reinforcement learning problems. However, the variance of the performance gradient estimates obtained from the simulation is often excessive, leading to poor sample efficiency. In this paper, we apply the stochastic variance reduced gradient descent (SVRG) technique [1] to model-free p...

متن کامل

Policy Gradients for CVaR-Constrained MDPs

We study a risk-constrained version of the stochastic shortest path (SSP) problem, where the risk measure considered is Conditional Value-at-Risk (CVaR). We propose two algorithms that obtain a locally risk-optimal policy by employing four tools: stochastic approximation, mini batches, policy gradients and importance sampling. Both the algorithms incorporate a CVaR estimation procedure, along t...

متن کامل

Equivalence Between Policy Gradients and Soft Q-Learning

Two of the leading approaches for model-free reinforcement learning are policy gradient methods and Q-learning methods. Q-learning methods can be effective and sample-efficient when they work, however, it is not well-understood why they work, since empirically, the Q-values they estimate are very inaccurate. A partial explanation may be that Q-learning methods are secretly implementing policy g...

متن کامل

Geometric Variance Reduction in Markov Chains. Application to Value Function and Gradient Estimation

We study a variance reduction technique for Monte Carlo estimation of functionals in Markov chains. The method is based on designing sequential control variates using successive approximations of the function of interest V . Regular Monte Carlo estimates have a variance of O(1/N), where N is the number of sample trajectories of the Markov chain. Here, we obtain a geometric variance reduction O(...

متن کامل

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms*

Gradient based policy optimization algorithms suffer from high gradient variance, this is usually the result of using Monte Carlo estimates of the Qvalue function in the gradient calculation. By replacing this estimate with a function approximator on state-action space, the gradient variance can be reduced significantly. In this paper we present a method for the training of a Gaussian Process t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015